Virelart - Компьютер Шаг за Шагом
  • Главная
  • Софт
  • Intel core i5 5 поколения. Поколения процессоров Intel: описание и характеристики моделей

Intel core i5 5 поколения. Поколения процессоров Intel: описание и характеристики моделей

Исследуем модели массового сегмента в сравнении с процессорами трехлетней давности

Четырехъядерные процессоры семейства Ivy Bridge плотно прописались на полках всех компьютерных магазинов, так что настало время расширить наши знания о них, доселе ограниченные лишь двумя топовыми оверклокерскими моделями Core i5 и i7 . Тем более что младшие модели вызывают больший практический интерес по целым двум причинам. Во-первых, они дешевле, причем временами заметно: экономия может составлять 1000-1500 рублей, что вполне сравнимо, например, с разницей в цене между Radeon HD 6670 и HD 7750 или же HD 7770 и HD 6930, то есть эта разница весьма актуальна для экономного геймера (отвлечемся пока от вопроса необходимости покупки в данном случае Core i5 и выше - могут же у человека и отличные от игр интересы быть параллельно). Во-вторых, полезность покупки представителя линейки 3х70К сильно снижает выросший тепловой поток (из-за уменьшения площади кристалла). Таким образом, оверклокеры, вполне возможно, по-прежнему будут более внимательно присматриваться к «старичкам» Core i5-2500К и i7-2600К, «воздушный» разгон которых несколько проще, а всем остальным доплачивать за разблокированные множители незачем. Зато приобретать «регулярные» Sandy Bridge стимулов уже не наблюдается: младшие Ivy Bridge стоят примерно столько же, но в штатном режиме потребляют меньше энергии и на одинаковых формально частотах работают несколько быстрее из-за улучшений технологии Turbo Boost. Даже если планируется небольшой разгон (и приобретение платы на допускающем это чипсете), не стоит забывать о том, что т. н. «Limited Unlocked Core» в третьем поколении Core никуда не делось, т. е. «накинуть» +400 МГц можно и на младших моделях процессоров, а получить ≈5 ГГц из-за ухудшившегося теплоотвода сложно и на старших.

В общем, подытоживая, младшие модели Core i5 и i7 на роль самых массовых процессоров не претендуют, поскольку стоят несколько дороговато с точки зрения «обычного» пользователя (как правило, ограничивающегося процессорами ценой до 200 долларов), однако, разумеется, обречены на бо́льшую популярность, чем их топовые собратья. Поэтому необходимость их тестирования очевидна, и именно им мы сегодня и займемся.

Конфигурация тестовых стендов

Процессор Core i5-3450 Core i5-3550 Core i5-3570K Core i7-3770 Core i7-3770K
Название ядра Ivy Bridge QC Ivy Bridge QC Ivy Bridge QC Ivy Bridge QC Ivy Bridge QC
Технология пр-ва 22 нм 22 нм 22 нм 22 нм 22 нм
Частота ядра (std/max), ГГц 3,1/3,5 3,3/3,7 3,4/3,8 3,4/3,9 3,5/3,9
31 33 34 34 35
Схема работы Turbo Boost 4-4-3-2 4-4-3-2 4-4-3-2 5-5-4-3 4-4-3-2
4/4 4/4 4/4 4/8 4/8
Кэш L1, I/D, КБ 32/32 32/32 32/32 32/32 32/32
Кэш L2, КБ 4×256 4×256 4×256 4×256 4×256
Кэш L3, МиБ 6 6 6 8 8
Частота UnCore, ГГц 3,1 3,3 3,4 3,4 3,5
Оперативная память 2×DDR3-1600 2×DDR3-1600 2×DDR3-1600 2×DDR3-1600 2×DDR3-1600
Видеоядро GMA HD 2500 GMA HD 2500 GMA HD 4000 GMA HD 4000 GMA HD 4000
Сокет LGA1155 LGA1155 LGA1155 LGA1155 LGA1155
TDP 77 Вт 77 Вт 77 Вт 77 Вт 77 Вт
Цена Н/Д() $250() $284() $368() $431()

Так на сегодняшний день выглядит вся линейка Ivy Bridge, за исключением энергоэффективных моделей. Последних стало больше, чем раньше, а вот количество обычных процессоров немного уменьшилось: на старте Core i5-2000 было четыре таких процессора, а в линейке 3000 осталось три. Со временем их количество наверняка подрастет, однако вряд ли сравняется с ассортиментом Sandy Bridge. Там, напомним, за прошедшие со старта полтора года накопилось уже 9 Core i5 и 3 Core i7, на что новая линейка отвечает тремя и двумя моделями соответственно. Зато S- и T-модификаций стало несколько больше с самого начала, т. е. тенденция прослеживается четко: раз уж Intel теперь удается «впихивать» в 45 Вт даже Core i7, странно было бы этим не воспользоваться. Тем более что и S-варианты от «регулярных» моделей отличает ныне не 30, а всего 12 Вт. В общем, ставка на экономичность.

Наиболее любопытны, пожалуй, будут результаты 3770 и 3770К. Как видим, лидерство второго процессора по номинальной тактовой частоте ни о чем не говорит - в реальности эти устройства, скорее всего, в одинаковые моменты времени будут работать на равных частотах. Если это предположение подтвердится, это будет окончательным гвоздем в гроб идеи покупать 3770К для работы в штатном режиме. Вот в прошлом поколении дело обстояло немного иначе: Core i7-2700K имел самые высокие в семействе тактовые частоты. Еще одним аргументом против старшего «обычного» Core i7-2600 было видеоядро GMA HD 2000, а не 3000 (как в 2600К и 2700К). А ныне в штатном режиме никаких различий между 3770 и 3770К быть не должно, да и GMA HD 4000 получили абсолютно все настольные Core i7. Т. е. формальные дополнительные 100 МГц номинальной частоты - лишь красивый бантик (чтоб покупателям топовой модели было приятнее), и одинаковый номер у обоих процессоров вовсе неспроста. А вот этажом ниже - все по-прежнему: Core i5-3570K действительно имеет чуть большую частоту, чем 3550, да еще и GMA HD 4000 у него единственного (на данный момент) среди всех настольных Core i5, так что тут как раз оправданы немного различающиеся номера.

Процессор Core 2 Duo E8600 Core 2 Quad Q9650 Core i5-750 Core i7-860 Core i7-920
Название ядра Wolfdale Yorkfield Lynnfield Lynnfield Bloomfield
Технология пр-ва 45 нм 45 нм 45 нм 45 нм 45 нм
Частота ядра (std/max), ГГц 3,33 3,0 2,66/3,2 2,8/3,46 2,66/2,93
Стартовый коэффициент умножения 10 9 20 21 20
Схема работы Turbo Boost - - 4-4-1-1 5-4-1-1 2-1-1-1
Кол-во ядер/потоков вычисления 2/2 4/4 4/4 4/8 4/8
Кэш L1, I/D, КБ 32/32 32/32 32/32 32/32 32/32
Кэш L2, КБ 6144 2×6144 4×256 4×256 4×256
Кэш L3, МиБ - - 8 8 8
Частота UnCore, ГГц - - 2,66 2,8 2,13
Оперативная память - - 2×DDR3-1333 2×DDR3-1333 3×DDR3-1066
Сокет LGA775 LGA775 LGA1156 LGA1156 LGA1366
TDP 65 Вт 95 Вт 95 Вт 95 Вт 130 Вт
Цена Н/Д() Н/Д() Н/Д() Н/Д() Н/Д()

С кем процессоры сравнивать? Для простоты мы решили устроить своеобразное экспресс-тестирование, благо К-семейство с прочими конкурентами аналогичного уровня сравнили еще в прошлый раз . Но за рамки семейства Ivy Bridge мы все же немного выйдем, взяв для сравнения пять «старичков». Core 2 Duo E8600 и Core 2 Quad Q9650 - лучшие процессоры для платформы LGA775 (не считая экстремальных моделей), которая оставалась самой массовой вплоть до 2009-2010 годов. Core i5-750 и Core i7-860 - две наиболее интересных модели для LGA1156 во второй половине 2009 года (в 2010 им на смену фактически пришли 760 и 870, но разница в производительности между ними и предшественниками невелика). И «народное» решение для ранней LGA1366, а также первый массово (относительно) доступный Core i7 - 920. Опять же - позднее за те же деньги Intel предлагала уже более быстрые решения, но началось это уже с 2010 года. А нам более интересен как раз период 2008-2009 по одной простой причине: с тех пор прошло уже порядка трех лет, так что «тогдашние» компьютеры уже может возникнуть соблазн поменять. Естественно, наиболее нетерпеливые энтузиасты это, возможно, уже проделали некоторое время назад, но их среди пользователей меньшинство. А тот, кто не торопился с заменой старого Core 2 Quad на Sandy Bridge, очень может быть, сейчас как раз будет рассматривать переход на Ivy Bridge как потенциально полезное мероприятие. Вот и оценим - насколько оно полезное на практике. Тем же, кто с нашим подходом в корне не согласен, традиционно рекомендуем воспользоваться сводной таблицей и сравнивать что угодно с чем угодно:)

Системная плата Оперативная память
LGA1155 Biostar TH67XE (H67)
LGA1366 Intel DX58SO2 (X58) 12 ГБ 3×1066; 8-8-8-19
LGA775 ASUS Maximus Extreme (X38) Corsair Vengeance CMZ8GX3M2A1600C9B (2×1333; 9-9-9-24)
LGA1156 ASUS P7H55-M Pro (H55) Corsair Vengeance CMZ8GX3M2A1600C9B (2×1333; 9-9-9-24)

Тестирование

Традиционно, мы разбиваем все тесты на некоторое количество групп и приводим на диаграммах средний результат по группе тестов/приложений (детально с методикой тестирования вы можете ознакомиться в отдельной статье). Результаты на диаграммах приведены в баллах, за 100 баллов принята производительность референсной тестовой системы сайт образца 2011 года. Основывается она на процессоре AMD Athlon II X4 620, ну а объем памяти (8 ГБ) и видеокарта () являются стандартными для всех тестирований «основной линейки» и могут меняться только в рамках специальных исследований. Тем, кто интересуется более подробной информацией, опять-таки традиционно предлагается скачать таблицу в формате Microsoft Excel , в которой все результаты приведены как в преобразованном в баллы, так и в «натуральном» виде.

Интерактивная работа в трёхмерных пакетах

Как видим, эффективность всех 45-нанометровых процессоров Intel примерно равная, так что какие-то отличия могут возникнуть лишь из-за экстенсивных улучшений, типа частоты или емкости кэш-памяти. А вот Sandy Bridge подняли планку процентов этак на 20-25, и Ivy Bridge это преимущество не растеряли - с вытекающим из этого итогом. Впрочем, по результатам очевидно, что именно для интерактивной работы, очень может быть, имеет смысл приобрести какой-нибудь из двухъядерных Core i3 для LGA1155 (или чуть подождать аналогичных моделей на Ivy Bridge), поскольку дополнительные потоки вычисления здесь излишни - пары точно хватит. А вот деньги лишними не бывают:)

Финальный рендеринг трёхмерных сцен

Что здесь наиболее интересно? То, что младший современный Core i5-3450 оказался немного быстрее, чем Core i7 трех-четырехлетней давности. Да, старенькие уже процессоры, но вообще говоря, относящиеся к более высокому классу (и более дорогие, в частности). И ведь это несмотря на весомый прирост от технологии Hyper-Threading, позволяющей Core i7 всегда обгонять Core i5 того же поколения! Прогресс со времен Core2 тоже весьма показателен - 3770/3770К почти вдвое быстрее, чем Q9650. На момент анонса в августе 2008 года последний, кстати, стоил 530 долларов оптом, т. е. куда дороже любого нынешнего процессора для LGA1155 (и вообще, в близком ценовом диапазоне уже почти полтора года как «прописались» шестиядерные Core i7). Ну а результаты E8600 особо комментировать нет смысла - как нам кажется, те, кому действительно нужна высокая производительность в многопоточных приложения, с Core 2 Duo расстались уже давно.

Упаковка и распаковка

Зато в архиваторных тестах польза от многопоточности не слишком велика, причина чего уже не раз была озвучена: лишь один тест из четырех умеет использовать ее полноценно, а двум - так и вовсе достаточно одного потока. Поэтому весь прирост может быть получен лишь за счет улучшения архитектуры и экстенсивных методов. Безусловно, он есть, но далеко не столь впечатляющий, как в предыдущем или последующем случаях.

Кодирование аудио

Сходная с рендерингом ситуация, за одним небольшим исключением: Core i5-3450 сумел обогнать только Core i7-920, но не более быстрые модели. Впрочем, с учетом любви этого теста к увеличению многопоточности любым способом, и это стоит оценивать как очень хороший результат. Первые (пусть и модернизированные) четырехъядерники Intel, естественно, современным не конкуренты даже при отсутствии у последних НТ. А при наличии - опять почти двукратная разница.

Компиляция

Как мы уже говорили, решение Intel уменьшить емкость кэш-памяти в Core i5 второго поколения сильно подрезало им крылья в компиляторных тестах. Третьего поколения это тоже касается, так что только лучший из современных Core i5 сумел лишь догнать худший из Core i7 всех времен. Но его он, по крайней мере, догнал. А вот Core i7 сохранили свои 8 МиБ кэш-памяти, так что с легкостью ушли вперед, причем один из лучших Core 2 Quad они опять обошли почти в два раза.

Математические и инженерные расчёты

И опять малопоточная группа, хотя в ней уже второй год подряд сказываются архитектурные улучшения обоих «мостов». Соответственно, даже Core i5-3450 весомо обошел всех старичков, что хорошо. А что плохо, так это то, что ни о каких двукратных приростах под такой нагрузкой речь не идет ни в какой паре «старый-новый» процессор.

Растровая графика

Снова смешанная группа, где есть прирост и от увеличения количества ядер, и от НТ, но в обоих случаях непринципиальный. Архитектура влияет сильнее, так что опять, с одной стороны, новые процессоры заметно быстрее старых, а с другой - перевес нигде не достигает двукратного.

Векторная графика

Здесь хватает и половины дозы Core 2 Duo, а что-либо улучшить можно лишь архитектурно - либо более высокими частотами. У Ivy Bridge есть и то, и другое, что позволяет им быть самыми быстрыми. Но не настолько более быстрыми, как в многопоточных тестах - тут в лучшем случае наблюдается полуторакратное превосходство.

Кодирование видео

А вот в обработке видео оно опять начинает стремиться к двукратному (если отбросить Core 2 Duo, однако, как нам кажется, иллюзий насчет двухъядерных процессоров под такой нагрузкой никто уже лет пять не питает). Более любопытно другое - уже отмеченная тенденция снижения эффективности Hyper-Threading по мере улучшения архитектуры Core: если в первом поколении i7 обходил аналогичные i5 примерно на 10%, то теперь разница снизилась вдвое. Что, в общем-то, объяснимо: чем «плотнее» доступные ресурсы загружаются одним потоком, тем сложнее их выделить для второго.

Офисное ПО

Что любопытно, так это то, что, казалось бы, очень консервативная офисная группа ускорилась ничуть не хуже, чем прочие (а сравнительно с некоторыми программами - и лучше). Как мы уже говорили, большого смысла в этом при сравнении процессоров рассматриваемого класса нет, однако все равно - пустячок, а приятно.

Java

Опять многопоточная группа, и опять почти двукратное преимущество новых Core i7 над старыми Core 2 Quad. Ну и то, что новые Core i5 способны обогнать старые Core i7, тоже уже не секрет. В общем, прогресс никуда не делся - весь вопрос в оценке его темпов.

Игры

А вот в играх, как уже сто раз говорено, производительность процессора определяющим фактором не является, поскольку на первом месте находится видеосистема. Но и пренебрегать процессором тоже, как видим, не стоит - даже самый дешевый из современных Core i5 почти в полтора раза быстрее лучшего Core 2 Duo и на 25% превосходит лучший Core 2 Quad. В общем, геймеру имеет смысл одновременно с обзаведением новой картой задуматься и о переходе с LGA775 - далеко не самая худшая идея. Главное, не испортить ее стремлением приобрести самый быстрый процессор под LGA1155 - вот это уже не слишком оправдано. А тем, кто за прошедшие годы успел мигрировать на LGA1366 или LGA1156, как нам кажется, можно и не суетиться, ибо не окупится.

Итого

Первое, на что стоит обратить внимание: кроме как для разгона, Core i7-3770K больше ни для чего не нужен. Разница в номинальной частоте, впрочем, как-то сказывается, но +0,5% производительности - это вовсе не то, за что стоит платить более 10% цены. Стоит ли вообще доплачивать за Core i7 - тоже вопрос интересный. Как видите, разница между семействами i7 и i5 действительно постепенно сокращается (вслед за снижением относительной эффективности Hyper-Threading), чему не смогло помешать даже урезание кэш-памяти у последних в прошлом году. Но тут уже каждый выбирает по возможностям и по потребностям: в некоторых классах задач разница между этими семействами по-прежнему велика, в некоторых же (тоже - как и прежде) не стоит того, чтобы обращать на нее внимание.

Стоит ли переходить на новую платформу с одной из старых? Не менее сложный и зависящий от многих факторов вопросов. Понятно, что тех, кому мощности используемого компьютера хватает, он не затрагивает - будут пользоваться, пока не сгорит. Либо - пока не возникнет непреодолимого желания купить что-нибудь новенькое, но тут уже расчеты и подсчеты смысла не имеют:) В остальных же случаях возможны варианты. Как видите, в общем и целом даже самый медленный процессор нового семейства Core i5 примерно в полтора раза быстрее, чем лучший для LGA775. Вкупе с прочими преимуществами новых материнских плат это приводит нас к однозначному выводу, что апгрейд в рамках LGA775 оправдан менее, чем переход на новую платформу. Для LGA1156 и LGA1366 всё не так однозначно - ведь мы рассматривали младшие процессоры для этих платформ, которые все равно от четырехъядерных Ivy Bridge отстают лишь раза в полтора максимум, а есть еще и старшие. Так что если такой процессор у вас есть, то можно и не торопиться до следующего кардинального обновления микроархитектуры Intel (или до какого-нибудь чуда AMD). Если нет, то приобрести старую платформу за разумные деньги, по всей вероятности, удастся только на вторичном рынке - покупать новый Core i7-960 по цене комплекта из Core i5-3550 и неплохой платы (а где-то такое соотношение наблюдается в тех магазинах, где «старички» еще остались на полках) уж точно не стоит. Ну или, разумеется, всегда можно и с разгоном побаловаться, благо старые платформы к этому относятся лояльнее новых.

В общем, в данном случае все зависит от того, какой точки зрения потенциальный покупатель (если, повторимся, он потенциально покупатель) придерживается. Оптимистичная - новые процессоры немного быстрее и экономичнее старых. Пессимистичная - слишком уж они немного быстрее, а деньги лишними не бывают. Конечный же выбор, как водится, будет зависеть от того, что перевесит:)

Миновал почти месяц, как компания Intel представила процессоры семейства Coffee Lake, и прошедшие недели явно продемонстрировали, что выпущены они были несколько поспешно. Показателей плохой подготовки анонса - масса. Доступность новинок в рознице крайне ограничена, а цены вследствие дефицита заметно завышаются продавцами. Не идеально обстоят дела и с материнскими платами: на прилавках имеется достаточно широкий выбор LGA1151-материнок на базе совместимого с Coffee Lake набора логики Z370, но многие из них вызывают серьёзные нарекания со стороны пользователей в связи с постоянно вскрывающимися недоработками в прошивках.

Тем не менее, несмотря на все имеющиеся проблемы, платформы на базе Coffee Lake оцениваются сообществом сугубо положительно. Добавив в новые процессоры дополнительные вычислительные ядра, компания Intel сделала именно то, чего от неё давно хотели пользователи. Производительность массовых интеловских процессоров совершила заметный рывок, и в результате представители нового семейства стали очень хорошими кандидатами на попадание в современные десктопы, даже несмотря на все «детские болезни» и существование конкурирующих процессоров AMD Ryzen.

Мы уже высказывали собственное мнение о Coffee Lake в обзоре : тестирование тогда показало, что компания Intel смогла быстро наверстать наметившееся было отставание от конкурента в отдельных аспектах. Тем не менее при всех своих достоинствах Core i7-8700K не слишком подходит для массового пользователя. Мало того, что с переходом на дизайн Coffee Lake компания Intel нарастила аппетиты и оценила свой новый флагманский массовый процессор дороже, чем раньше, подняв рекомендованную цену Core i7-8700K с привычных $339 до $359. К тому же реальные розничные цены заходят далеко за эту черту. Например, в крупнейших североамериканских онлайн-магазинах за этот чип попросят как минимум $410 (при условии наличия на складе), а отечественную розницу не сдерживают и такие рамки.

Понятное дело, покупать массовый процессор за сумму, превышающую 400 долларов, готовы далеко не все. Поэтому мы решили обратить внимание на новинки классом ниже, которые относятся к семейству Core i5, а не Core i7. Как и раньше, такие CPU отличаются от своих старших собратьев отсутствием поддержки технологии Hyper-Threading, то есть шестиядерное строение они сохраняют. А это значит, что по соотношению цены и производительности Coffee Lake в обличии Core i5 могут быть ещё привлекательнее, чем Core i7. Они тоже способны предложить возросшее по сравнению с предшественниками число вычислительных ядер, но даже согласно официальному прайс-листу их стоимость ниже, чем у Core i7, как минимум на $100.

Раньше мы часто рекомендовали разблокированные процессоры серии Core i5 для настольных компьютеров среднего уровня, в первую очередь игровой направленности. Теперь же, кажется, обзаведясь парой дополнительных ядер, эта серия предлагает ещё лучшее сочетание потребительских характеристик. Именно поэтому мы решили провести подробное тестирование старшего Coffee Lake серии Core i5 и попробовать оценить, намного ли такой вариант хуже по сравнению с обладающим технологией Hyper-Threading процессором Core i7 и как он противостоит конкурирующим предложениям серий Ryzen 7 и Ryzen 5, которые, несмотря на проведённую Intel модернизацию модельного ряда, продолжают иметь превосходство по числу потоков, а иногда и ядер.

Core i5-8600K в подробностях

Процессор Core i5-8600K, как и Core i7-8700K, вполне можно охарактеризовать как типичного представителя семейства Coffee Lake - он имеет в своём распоряжении шесть вычислительных ядер. Главное отличие от старшего собрата - отключённая технология Hyper-Threading: именно этим десктопные Core i5 всегда и отличались от Core i7 с самого момента появления данных торговых марок в 2011 году. Приверженность Intel этому принципу делает сегодняшний Core i5-8600K особенно привлекательным — по сравнению с предшественником поколения Kaby Lake вычислительная мощность новинки значительно выросла: у неё стало не только в полтора раза больше ядер, но и поднялись рабочие частоты. Всё это отлично видно при сопоставлении спецификаций.

Core i5-8 600K Core i 5 -7 6 00K
Кодовое имя Coffee Lake Kaby Lake

Технология производства, нм
14++ 14+
Ядра/потоки 6/6 4/4
Базовая частота, ГГц 3,6 3,8
Частота Turbo Boost 2.0, ГГц 4,3 4,2
L3-кеш, Мбайт
9
6
Поддержка памяти DDR4-2666 DDR4-2400
Интегрированная графика GT2: 24 EU GT2: 24 EU
Макс. частота графического ядра, ГГц 1,15 1,15
Линии PCI Express 16 16
TDP, Вт 95 91
Сокет LGA1151 v2 LGA1151 v1
Официальная цена $257 $242

Никаких улучшений на микроархитектурном уровне в Coffee Lake нет, то есть при однопоточной нагрузке и на одинаковой тактовой частоте новые процессоры идентичны по производительности Kaby Lake. Однако для производства новинок используется улучшенный техпроцесс 14++ нм. Пока Intel никак не удаётся приступить к выпуску крупных процессорных кристаллов по более совершенной 10-нм технологии, начало применения которой для изготовления десктопных процессоров отодвинулось как минимум до второй половины 2018 года, инженеры занимаются оптимизацией старого 14-нм техпроцесса. И отнюдь не без успеха. Сегодняшняя технология 14++ нм по сравнению с изначальной версией техпроцесса смогла обеспечить солидное снижение токов утечки, которое вылилось в 52-процентное уменьшение тепловыделения при том же уровне производительности. Именно благодаря этому достижению в Core i5-8600K стало в полтора раза больше ядер, а максимальная частота в турборежиме увеличилась с 4,2 ГГц до 4,3 ГГц.

Правда, некоторые опасения вызывает снижение в характеристиках базовой частоты: для Core i5-8600K она установлена в 3,6 ГГц, что на 200 МГц меньше, чем у соответствующего Kaby Lake. Однако это отставание должно компенсироваться агрессивной технологией Turbo Boost 2.0, которая в Coffee Lake умеет повышать частоту процессора гораздо сильнее, чем раньше. Даже при нагрузке на все шесть ядер, если энергопотребление и тепловыделение Core i5-8600K остаётся в установленных рамках, рабочая частота процессора может возрастать до 4,1 ГГц. В результате с учётом активного турборежима Core i5-8600K должен всегда опережать своего четырёхъядерного предшественника.

Номинальная частота Максимальная частота Turbo Boost 2.0
1 ядро 2 ядра 3 ядра 4 ядра 5 ядер 6 ядер
Core i5-8600K 3,6 ГГц 4,3 ГГц 4,2 ГГц 4,2 ГГц 4,2 ГГц 4,1 ГГц 4,1 ГГц
Core i5-7600K 3,8 ГГц 4,2 ГГц 4,1 ГГц 4,1 ГГц 4,0 ГГц - -

Помимо увеличенных частот и дополнительных ядер Core i5-8600K может предложить увеличенный на 3 Мбайт кеш третьего уровня, а также официальную поддержку двухканальной DDR4-2666 с пропускной способностью до 42,7 Гбайт/с против DDR4-2400 с пропускной способностью 38,4 Гбайт/с.

Правда, чтобы получить все преимущества, предоставляемые новинкой, потребуется новая системная плата на базе набора логики Intel Z370. В новой версии LGA1151, которая используется процессорами Coffee Lake, добавлены дополнительные линии питания, и в старых LGA1151-платах на базе Z270 или Z170 (и других чипсетов прошлых поколений) процессоры восьмитысячной серии не работают. Зато все без исключения совместимые с Core i5-8600K новые платы могут обеспечить его разгон. Он, как и Core i7-8700K, имеет разблокированный множитель, поэтому с помощью пары манипуляций в BIOS материнской платы его рабочую частоту можно легко увеличить, как можно увеличить и частоту, на которой работает L3-кеш и системная память. При этом для оверклокерских LGA1151-процессоров семейства Coffee Lake заявляется соответствие 95-ваттному тепловому пакету, а это значит, что теоретически их умеренный разгон вполне возможен без применения громоздких воздушных или жидкостных систем охлаждения.

Нет никаких сомнений, что Core i5-8600K лучше своего предшественника поколения Kaby Lake, Core i5-7600K, по всем параметрам. Однако сравнивать этот процессор теперь нужно не только с внутренними конкурентами, но и с теми процессорами, которые в том же ценовом сегменте предлагает компания AMD. Реальная розничная цена Core i5-8600K на сегодняшний день составляет порядка $300, и за эту сумму можно купить восьмиядерный Ryzen 7 1700. Если же ориентироваться на официальные цены, то прямым конкурентом для старшего Core i5 является шестиядерный Ryzen 5 1600X. Давайте сопоставим спецификации Core i5-8600K с обоими альтернативами AMD.

Intel AMD
Core i5-8600K Ryzen 7 1700 Ryzen 5 1600X
Сокет LGA1151 v2 Socket AM4 Socket AM4
Ядра/Потоки 6/6 8/16 6/12
Базовая частота 3,6 ГГц 3,0 ГГц 3,6 ГГц
Турборежим/XFR 4,3 ГГц 3,7/3,75 ГГц 4,0/4,1 ГГц
Разгон Есть Есть Есть
L 2-кеш 256 Кбайт на ядро 512 Кбайт на ядро 512 Кбайт на ядро
L 3-кеш 9 Мбайт 2 × 8 Мбайт 2 × 8 Мбайт
Память DDR4-2666 DDR4-2666 DDR4-2666
Линии PCIe 16 16 16
Графическое ядро Есть Нет Нет
TDP 95 Вт 65 Вт 95 Вт
Официальная цена $257 $329 $249

С точки зрения формальных характеристик предложения AMD продолжают выглядеть привлекательно, даже несмотря на то, что компания Intel в процессорах Coffee Lake существенно увеличила количество вычислительных ядер. Ryzen 5 и Ryzen 7 продолжают превосходить соперников как минимум по числу исполняемых потоков и по размерам кеш-памяти. Однако на стороне Coffee Lake лидерство по тактовым частотам, плюс не следует забывать и о том, что современные процессорные ядра Intel имеют явное преимущество по показателю IPC - числу исполняемых за такт инструкций.

Как показали наши предыдущие тесты, в ресурсоёмких приложениях шестиядерный Core i7-8700K выступает как минимум не хуже, чем восьмиядерный Ryzen 7 1700X. Но разрыв в характеристиках Core i5-8600K и Ryzen 7 1700 существеннее: в то время как Intel в новых процессорах среднего уровня блокирует Hyper-Threading, технология SMT в Ryzen присутствует не только в восьмиядерных Ryzen 7, но в шестиядерных Ryzen 5. А это значит, что ситуация в среднем ценовом сегменте может остаться неоднозначной даже после обновления модельного ряда процессоров Intel.

Естественно, все точки над «ё» расставят подробные тесты, однако переходить к ним пока рано.

Нас обманули: особенности турборежима в Coffee Lake

Когда мы впервые знакомились с процессорами поколения Coffee Lake и тестировали , мы отмечали, что его реальная частота всегда соответствует максимальной разрешённой турбочастоте для соответствующей нагрузки. Это положительно сказывалось на производительности: ещё бы, Core i7-8700K с номинальной частотой 3,7 ГГц даже при максимальной AVX-нагрузке на все шесть ядер «шпарил» на 4,3 ГГц, не оставляя никаких сомнений в превосходстве нового процессорного дизайна технологии и 14++ нм. Правда, некоторое недоумение при этом вызывали тепловые и электрические показатели. Дело в том, что в то время как тепловой пакет Core i7-8700K установлен в 95 Вт, а максимально допустимая температура составляет 100 градусов, его реальное потребление под максимальной нагрузкой доходило до 140-145 Вт, а температура с высокоэффективным кулером Noctua NH-U14S - до 88 градусов. Очень сомнительно, что такой режим работы CPU можно считать нормальным.

Ещё большие вопросы относительно корректности работы процессоров Coffee Lake в турборежиме стали возникать тогда, когда мы начали знакомиться с образцом Core i5-8600K. На этот раз в наших руках оказался серийный экземпляр CPU, и списать наблюдавшиеся с потреблением и температурами странности на особенности инженерного семпла было уже невозможно. А причин для удивления только прибавилось. Дело в том, что в номинальном режиме при полной AVX-нагрузке, которую по традиции мы создавали утилитой LinX 0.8.0, температура выходила за всякие рамки разумного.

Как видно по приведённому скриншоту, частота процессора под полной нагрузкой в LinX 0.8.0 составляет 4,1 ГГц - это максимально возможная частота Core i5-8600K при задействовании всех шести ядер. Потребление CPU при этом достигает уже знакомых нам 145 Вт, а температура доходит до разрешённого спецификацией максимума - 99 градусов. И это с кулером Noctua NH-U14S, обвинять который в неумении противостоять высокой тепловой мощности чипа нет ни малейших оснований! Понятно, что столь высокая температура во многом связана с низкой эффективностью используемого в процессорах Intel внутреннего термоинтерфейса, но в то же время вполне очевидно, что никакого критического нагрева Core i5-8600K в номинальном режиме быть всё равно не должно.

Поэтому мы обратились за разъяснениями к инженерам Intel, которые дали весьма обескураживающий комментарий: на многих LGA1151-материнских платах, основанных на наборе логики Z370, работа технологии Turbo Boost 2.0 реализована неверно. В попытках выжать из новых процессоров максимальную эффективность, производители плат намеренно игнорируют установленные ограничения по энергопотреблению процессоров, и это действительно может приводить к перегреву. К сожалению, используемая нами материнская плата ASUS Strix Z370-F Gaming оказалась ярким примером платы с неправильно сконфигурированным турборежимом. Поэтому нет ничего удивительного, что при испытаниях на этой платформе Core i7-8700K и Core i5-8600K демонстрировали зашкаливающую температуру и энергопотребление.

На самом же деле процессоры семейства Coffee Lake при активации турборежима вовсе не должны работать на максимальных частотах, определённых для нагрузки на то или иное количество ядер. Это - лишь верхняя граница, и к ней прилагаются ещё некоторые условия. Главное из них: потребление процессора на длительных временных отрезках должно не выходить за установленные ограничения по TDP (то есть за пределы 95 Вт для Core i7-8700K и Core i5-8600K) и лишь кратковременно может достигать 120 Вт. Однако проверку этих дополнительных условий многие производители плат заблокировали на уровне BIOS, и сейчас Intel ведёт работу с партнёрами с тем, чтобы корректная работа технологии Turbo Boost 2.0 была восстановлена.

Понятно, что это повлечёт за собой некоторое снижение производительности новых процессоров при высокой вычислительной нагрузке, но зато температурный режим Coffee Lake сможет, наконец, не внушать никаких опасений. И некоторых успехов в наставлении производителей плат представители Intel уже смогли достичь. Например, в последних версиях BIOS для нашей платы ASUS Strix Z370-F Gaming (0419 и 0420) реализация турборежима уже вполне соответствует норме. После обновления прошивки частота Core i5-8600K при прохождении тестирования в LinX 0.8.0 на отметке в 4,1 ГГц уже не держится и снижается до 3,5 ГГц, благодаря чему температура и потребление остаётся во вполне допустимых рамках: 95 Вт и 72 градуса соответственно.

Что же касается производительности, то переход материнской платы к корректной работе с множителем ожидаемо привёл к 10-процентному снижению показателя производительности в тесте Linpack (с 330 до 300 Гфлоп). Однако в данном случае имеет место максимальное занижение частоты, так как Linpack пользуется чрезвычайно энергоёмкими AVX2-инструкциями. Например, при прохождении тестирования в Prime95 с деактивированными AVX-инструкциями рабочая частота Core i5-8600K составляет уже 3,9 ГГц, что заметно ближе к установленному для полной нагрузки максимуму, но всё же не дотягивает до него.

Тем не менее нельзя не обратить внимание на тот факт, что из-за неправильной поддержки турборежима материнскими платами результаты измерений производительности Coffee Lake, сделанные в момент или до анонса процессоров этого семейства, оказались несколько завышены (это касается не только нашего, но и подавляющего большинства обзоров, доступных в Сети). На самом же деле производительность Coffee Lake в номинальном режиме при тяжёлой многопоточной нагрузке будет где-то на 3-7 процентов ниже полученной в первоначальных тестированиях, но зато в реальности они теперь смогут функционировать при более адекватной температуре и демонстрировать куда более умеренное энергопотребление.

Такая работа процессоров с множителями, когда при тяжёлой вычислительной нагрузке частота заметно падает, причём порой даже ниже базового паспортного значения, раньше была характерна исключительно для платформы HEDT, где процессоры обладают значительным числом вычислительных ядер. Однако с внедрением дизайна Coffee Lake многоядерными стали и обычные массовые модели, поэтому нет ничего странного в том, что коэффициент умножения теперь динамически подстраивается к потреблению и в платформе LGA1151.

Именно поэтому компания Intel приняла решение прекратить детально описывать значения частоты турборежима при различной нагрузке, ограничиваясь указанием лишь только общего максимума, - подробности теперь не имеют особого смысла. Дело в том, что частоты, которые заложены в турборежиме, в реальности могут быть недостижимы. Всё зависит от текущего уровня энергопотребления, а оно не только определяется характером нагрузки, но и может различаться в том числе и для разных экземпляров процессоров в зависимости от качества полупроводникового кристалла и номинального напряжения VID.

Часть вторая : "Важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7. Какие из этих чипов представляют особый интерес"

Введение

Сначала мы приведём важнейшие характеристики каждого семейства процессоров Intel Core i3/i5/i7, а затем поговорим о том, какие из этих чипов представляют особый интерес. Для удобства читателей мы посчитали целесообразным изложить информацию в форме своеобразного справочника, а все данные об актуальных моделях модели свести в небольшие таблицы. Приведённые нами цены - российские розничные, зафиксированные в момент публикации этого материала, для процессоров в "боксовой" комплектации (то есть с фирменным кулером).

Core i3

Core i3 (Clarkdale) - двухъядерный процессор последнего поколения, предназначенный для настольных компьютеров начального уровня. Впервые представлен 7 января 2010 года. Устанавливается в разъём LGA1156. Производится по 32-нм технологии.

Снабжён встроенным контроллером PCI Express 2.0 x16, благодаря которому графический ускоритель может подключаться напрямую к процессору. Для соединения с набором системной логики применяется шина DMI (Digital Media Interface) c пропускной способностью 2 Гбайт/с.

В процессоры Core i3 встроено графическое ядро GMA HD с двенадцатью конвейерами и тактовой частотой 733 МГц.

Базовая тактовая частота для всех моделей Core i3 - 133 МГц, номинальные частоты достигаются применением множителей.

Совместимые наборы системной логики: Intel H55 Express, H57 Express, P55 Express, Q57 Express

Основные технические параметры Core i3

  • Микроархитектура Nehalem
  • Два ядра
  • Кэш-память L3 - 4 Мбайт, общая для всех ядер
  • Встроенный контроллер PCI Express 2.0 x16
  • Встроенный графический адаптер с тактовой частотой 733 МГц
  • Набор инструкций SSE 4.2
  • Набор инструкций AES-NIS

Core i5

Core i5 (Clarkdale или Lynnfield) - двух или четырёхъядерный процессор последнего поколения, предназначенный для настольных компьютеров среднего уровня. Впервые представлен 8 сентября 2009 года. Устанавливается в разъём LGA1156. Двухъядерные Clarkdale производится по 32-нм технологии, четырёхъядерные Lynnfield - по 45-нм технологии.

Оснащён встроенным двухканальным контроллером оперативной памяти DDR3-1066/1333 с напряжением до 1,6 В. Модули, рассчитанные на более высокое напряжение, не будут работать с этим чипом и даже могут его повредить.

Снабжён встроенным контроллером PCI Express 2.0 x16, благодаря которому графический ускоритель может подключаться напрямую к процессору. В моделях со встроенным графическим ядром GMA HD к чипу может подключаться одна видеокарта в режиме x16, в моделях без встроенной графики - две видеокарты в режиме x8 каждая.

Для соединения с набором системной логики применяется шина DMI (Digital Media Interface) c пропускной способностью 2 Гбайт/с.

В двухъядерных моделях (серия 6хх) встроен графический адаптер GMA HD и реализована технология Hyper-Threading, в четырёхъядерных (серия 7xx) графики и Hyper-Threading нет. В моделях, номер которых заканчивается на 1, тактовая частота графики составляет 900 МГц, в моделях, номер которых заканчивается на 0, графическое ядро работает на частоте 733 МГц.

Во всех Core i5 реализована технология автоматического повышения тактовой частоты Turbo Boost в ресурсоёмких задачах.

Базовая тактовая частота для всех моделей Core i5 - 133 МГц, номинальные частоты достигаются применением множителей.

Совместимые наборы системной логики: Intel H55 Express, H57 Express, P55 Express, Q57 Express.

Основные технические параметры Core i5

  • Микроархитектура Nehalem
  • Два или четыре ядра
  • Кэш-память L1 - 64 Кбайт (32 Кбайт для данных и 32 Кбайт для инструкций) для каждого ядра
  • Кэш-память L2 - 256 Кбайт для каждого ядра
  • Кэш-память L3 - 4 или 8 Мбайт, общая для всех ядер
  • Встроенный двухканальный контроллер оперативной памяти DDR3-1066/1333 МГц
  • Встроенный контроллер PCI Express 2.0 (одна линия x16 или две x8 в моделях без интегрированной графики)
  • Встроенный графический адаптер с тактовой частотой 733 или 900 МГц
  • Поддержка технологии виртуализации VT
  • Поддержка 64-битных инструкций Intel EM64T
  • Поддержка технологии Hyper-Threading в двухъядерных моделях
  • Набор инструкций SSE 4.2
  • Набор инструкций AES-NIS
  • Антивирусная технология Execute Disable Bit
  • Технология динамического изменения частоты Enhanced SpeedStep

Core i7

Core i7 (Bloomfield, Lynnfield или Gulftown) - четырёх или шестиядерный процессор последнего поколения, предназначенный для настольных компьютеров высшего класса. Впервые представлен в ноябре 2008 года. Четырёхъядерные Bloomfield и Lynnfield производится по 45-нм технологии, шестиядерные Lynnfield - по 32-нм технологии.

Выпускаются в двух модификациях: серия 9хх (для разъёма LGA1366) со встроенным трёхканальным контроллером памяти и шиной QPI и серия 8xx (для разъёма LGA1156) c двухканальным контроллером памяти, встроенным контроллером PCI Express 2.0 и шиной DMI) Поддерживается оперативная память DDR3-1066/1333 с напряжением до 1,6 В. Модули, рассчитанные на более высокое напряжение, не будут работать с этим чипом и даже могут его повредить.

Процессоры для разъёма LGA1366 оснащаются скоростной шиной QPI, работающей на частоте 2,4 ГГц (до 4,8 Гбайт/с) в обычных i7 и на частоте 3,2 ГГц (6,4 Гбайт/с) в модификациях Extreme (к ним относятся i7-965, i7-975 и i7-980X.

Чипы для разъёма LGA1156 снабжены встроенным контроллером PCI Express 2.0 x16, благодаря которому графический ускоритель может подключаться напрямую к процессору. Для соединения с набором системной логики здесь применяется шина DMI (Digital Media Interface) c пропускной способностью 2 Гбайт/с.

Во всех Core i7 реализованы технология автоматического повышения тактовой частоты Turbo Boost в ресурсоёмких задачах, а также технология Hyper-Threading.

Базовая тактовая частота для всех моделей Core i7 - 133 МГц, номинальные частоты достигаются применением множителей. В модификациях Core i7 Extreme множитель разблокирован, что позволяет беспрепятственно повышать тактовую частоту процессора.

Совместимые наборы системной логики: серия 8xx - Intel H55 Express, H57 Express, P55 Express, Q57 Express, серия 9xx - Intel X58 Express.

Основные технические параметры Core i7

  • Микроархитектура Nehalem
  • Четыре или шесть ядер
  • Кэш-память L1 - 64 Кбайт (32 Кбайт для данных и 32 Кбайт для инструкций) для каждого ядра
  • Кэш-память L2 - 256 Кбайт для каждого ядра
  • Кэш-память L3 - 8 или 12 Мбайт, общая для всех ядер
  • Встроенный двухканальный (LGA1156) или трёхканальный (LGA1366) контроллер оперативной памяти DDR3-1066/1333 МГц
  • Шина QPI, работающая на частоте 2,4 ГГц (4,8 Гбайт/с) или 3,2 ГГц (6,4 Гбайт/с) на моделях для LGA1366
  • Шина DMI (2 Гбайта/с) на моделях для LGA1156
  • Встроенный контроллер PCI Express 2.0 (одна линия x16 или две x8 в моделях без интегрированной графики) на моделях для LGA1156
  • Поддержка технологии виртуализации VT
  • Поддержка 64-битных инструкций Intel EM64T
  • Поддержка технологии Hyper-Threading
  • Поддержка технологии Turbo Boost
  • Набор инструкций SSE 4.2
  • Набор инструкций AES-NIS для модели i7-980X
  • Антивирусная технология Execute Disable Bit
  • Технология динамического изменения частоты Enhanced SpeedStep

Что выбрать?

Процессоры Core i3-530 и 540 - довольно мощные и недорогие чипы, при этом разница в цене между ними ничтожна, так что нет никакого смысла приобретать 530-й, если только вы не строго ограничены в бюджете.

Чипы серии Core i3 - прямые конкуренты процессоров предыдущего поколения Core 2 Duo Eхxx: они стоят примерно одинаково и обеспечивают сравнимый уровень производительности, хотя и несколько быстрее. Тем не менее, хотя материнские платы с разъёмом LGA1156 дороже аналогов с LGA775, покупка чипа i3 - более разумное долгосрочное вложение, чем Core 2 Duo, поскольку эти процессоры не только достаточно быстры сегодня, но и могут быть заменены на любой чип для LGA1156 в будущем - даже на супермощный Core i7. Если i3-530 для вас слишком дорог, можно обратить внимание на Pentium G6950 ("боксовая" версия в комплекте со штатным кулером обойдётся примерно в 3200 рублей), который медленнее обеих "трёшек", но практически не уступает большинству Core 2 Duo.

Что касается четырёхъядерных Core 2 Quad, которые чуть дороже двухъядерных Core i3 (например, "боксовый" Core 2 Quad Q8300 стоит порядка 5000 рублей), то их покупка сегодня имеет смысл лишь для апгрейда существующей системы под сокет LGA775 - в этом случае это очень разумный выбор.

Все процессоры Core i5 600-й серии отличаются высокой производительностью, однако если вам не нужен чип со встроенной графикой, нет особого смысла покупать модель этого семейства. Эти модели ориентированы, скорее, на корпоративный рынок - офисному компьютеру не нужна мощная графика, а чем он проще по конструкции, тем удобнее в обслуживании.

За те же деньги, что просят за чипы 600-го семейства, лучше приобрести четырёхядерный i5-750 - это идеальный выбор для сборки мощного домашнего ПК за разумные деньги. Если вы делаете выбор в рамках 600-й серии, вам следует знать, что 661-й отличается от 660-го только чуть более быстрой встроенной графикой, но при этом повышенным энергопотреблением и отсутствием аппаратной поддержки виртуализации ввода/вывода VT-d, актуальной лишь для корпоративных пользователей. Иными словами, если вы покупаете ЦП для домашнего компьютера, есть смысл предпочесть Core i5-661.

Для постройки мощного игрового ПК, лучший выбор по критерию цена/производительность - Core i7-860, все остальные варианты обойдутся значительно дороже, поскольку потребуется более дорогая системная плата на чипсете X58 Express под сокет LGA1366.

Шестиядерный "экстремальный" Core i7-980Х - непревзойдённый лидер по производительности не только всей современной линейки десктопных процессоров Intel, но и конкурирующих моделей AMD. Поэтому не стоит удивляться, что система на его основе обойдётся в довольно внушительную сумму. Любители всего самого-самого могут готовить кошельки - этот чип вот-вот появится на прилавках российских магазинов, сменив предыдущий флагман Core i7-975

ВведениеНовые процессоры компании Intel, относящиеся к семейству Ivy Bridge, присутствуют на рынке уже несколько месяцев, но между тем складывается впечатление, что их популярность не слишком высока. Мы неоднократно отмечали, что на фоне предшественников они не выглядят существенным шагом вперёд: их вычислительная производительность возросла незначительно, а частотный потенциал, раскрываемый через разгон, и вовсе, стал даже хуже чем у прошлого поколения Sandy Bridge. Отсутствие ажиотажного спроса на Ivy Bridge отмечает и Intel: жизненный цикл прошлого поколения процессоров, при производстве которого используется более старый технологический процесс с 32-нм нормами, продлевается и продлевается, а в отношении распространения новинок делаются не самые оптимистичные прогнозы. Конкретнее, к концу этого года Intel собирается довести долю Ivy Bridge в поставках десктопных процессоров лишь до 30 процентов, в то время как 60 процентов всех поставляемых CPU будет продолжать базироваться на микроархитектуре Sandy Bridge. Даёт ли это нам право не считать новые интеловские процессоры очередным успехом компании?

Отнюдь нет. Дело в том, что всё сказанное выше относится только к процессорам для настольных систем. Мобильный же рыночный сегмент отреагировал на выход Ivy Bridge совсем по-другому, ведь большинство из нововведений нового дизайна сделано именно с оглядкой на ноутбуки. Два основных преимущества Ivy Bridge перед Sandy Bridge: существенно снизившееся тепловыделение и энергопотребление, а также ускоренное графическое ядро с поддержкой DirectX 11 – в мобильных системах востребованы очень серьёзно. Благодаря этим своим достоинствам Ivy Bridge не только дал толчок к выходу ноутбуков с гораздо лучшим сочетанием потребительских характеристик, но и катализировал внедрение ультрапортативных систем нового класса – ультрабуков. Новый же технологический процесс с 22-нм нормами и трёхмерными транзисторами позволил снизить размеры и себестоимость изготовления полупроводниковых кристаллов, что, естественно, выступает ещё одним аргументом в пользу успешности нового дизайна.

В результате, в какой-то мере нерасположенными к Ivy Bridge могут быть лишь пользователи настольных компьютеров, причём недовольство связано не с какими-то серьёзными недостатками, а скорее с отсутствием кардинальных положительных перемен, которые, впрочем, никто и не обещал. Не стоит забывать, что в интеловской классификации процессоры Ivy Bridge относятся к такту «тик», то есть представляют собой простой перевод старой микроархитектуры на новые полупроводниковые рельсы. Впрочем, и сама Intel прекрасно понимает, что приверженцы настольных систем заинтригованы процессорами нового поколения несколько меньше, чем их коллеги – пользователи ноутбуков. Поэтому и не торопится проводить полномасштабное обновление модельного ряда. На данный момент в десктопном сегменте новая микроархитектура культивируется лишь в старших четырёхъядерных процессорах серий Core i7 и Core i5, причём модели, основанные на дизайне Ivy Bridge, соседствуют с привычными Sandy Bridge и не спешат отодвигать их на второй план. Более же агрессивное внедрение новой микроархитектуры ожидается лишь поздней осенью, а до тех пор вопрос о том, какие же четырёхъядерные процессоры Core предпочтительнее – второго (двухтысячной серии) или третьего (трёхтысячной серии) поколения, покупателям предлагается решать самостоятельно.

Собственно, для облегчения поисков ответа на этот вопрос мы и провели специальное тестирование, в котором решили сопоставить между собой процессоры Core i5, относящиеся к одной ценовой категории и предназначенные для использования в рамках одной и той же платформы LGA 1155, но основанные на разных дизайнах: Ivy Bridge и Sandy Bridge.

Третье поколение Intel Core i5: подробное знакомство

Ещё полтора года тому назад, с выпуском серии Core второго поколения, Intel ввела чёткую классификацию процессорных семейств, которой и придерживается по настоящий момент. Согласно этой классификации фундаментальными свойствами Core i5 являются четырёхъядерный дизайн без поддержки технологии «виртуальной многопоточности» Hyper-Threading и кэш-память третьего уровня объёмом 6 Мбайт. Эти особенности были присущи процессорам Sandy Bridge предыдущего поколения, они же соблюдаются и в новом варианте CPU с дизайном Ivy Bridge.

Это значит, что все процессоры серии Core i5, использующие новую микроархитектуру, сильно похожи друг на друга. Это в какой-то мере позволяет Intel унифицировать выпуск продукции: все сегодняшние Core i5 поколения Ivy Bridge используют совершенно идентичный 22-нм полупроводниковый кристалл степпинга E1, состоящий из 1,4 млрд. транзисторов и имеющий площадь порядка 160 кв. мм.

Несмотря на схожесть всех LGA 1155-процессоров Core i5 по целому ряду формальных характеристик, отличия между ними хорошо заметны. Новый технологический процесс с 22-нм нормами и трёхмерными (Tri-Gate) транзисторами позволил Intel понизить для новых Core i5 типичное тепловыделение. Если ранее Core i5 в LGA 1155-исполнении обладали тепловым пакетом 95 Вт, то для Ivy Bridge эта величина снижена до 77 Вт. Однако вслед за уменьшением типичного тепловыделения увеличения тактовых частот процессоров Ivy Bridge, входящих в семейство Core i5, не последовало. Старшие Core i5 прошлого поколения, также как и их сегодняшние последователи, имеют номинальные тактовые частоты, не превышающие 3.4 ГГц. Это значит, что в целом преимущество в производительности новых Core i5 над старыми обеспечивается лишь улучшениями в микроархитектуре, которые, применительно к вычислительным ресурсам CPU, малозначительны даже по словам самих разработчиков Intel.

Говоря же о сильных сторонах свежего процессорного дизайна, в первую очередь следует обратить внимание на изменения графического ядра. В процессорах Core i5 третьего поколения используется новая версия интеловского видеоускорителя – HD Graphics 2500/4000. Она обладает поддержкой программных интерфейсов DirectX 11, OpenGL 4.0 и OpenCL 1.1 и в некоторых случаях может предложить более высокую производительность в 3D и более быстрое кодирование видео высокого разрешения в формат H.264 посредством технологии Quick Sync.

Кроме того, процессорный дизайн Ivy Bridge содержит и ряд улучшений сделанных в «обвязке» - контроллерах памяти и шины PCI Express. В результате, системы, основанные на новых процессорах Core i5 третьего поколения, могут полноценно поддерживать видеокарты, использующие графическую шину PCI Express 3.0, а также способны тактовать DDR3-память на более высоких, чем их предшественники, частотах.

С момента своего первого дебюта на широкой публике до настоящего момента десктопное процессорное семейство Core i5 третьего поколения (то есть, процессоры Core i5-3000) осталось почти неизменным. В нём добавилась лишь пара промежуточных моделей, в результате чего, если не брать в рассмотрение экономичные варианты с урезанным тепловым пакетом, оно теперь состоит из пяти представителей. Если к этой пятёрке добавить пару основанных на микроархитектуре Ivy Bridge Core i7, мы получим полную десктопную линейку 22-нм процессоров в LGA 1155-исполнении:



Приведённая таблица, очевидно, нуждается в дополнении, более подробно описывающем функционирование технологии Turbo Boost, позволяющей процессорам самостоятельно увеличивать свою тактовую частоту, если это позволяют энергетические и температурные условия эксплуатации. В Ivy Bridge данная технология претерпела определённые изменения, и новые процессоры Core i5 способны авторазгоняться несколько агрессивнее, чем их предшественники, относящиеся к семейству Sandy Bridge. На фоне минимальных улучшений в микроархитектуре вычислительных ядер и отсутствия прогресса в частотах именно это зачастую способно обеспечить определённое превосходство новинок над предшественниками.



Предельная частота, которую процессоры Core i5 способны достигать при загрузке одного или двух ядер, превышает номинальную на 400 МГц. Если же нагрузка носит многопоточный характер, то Core i5 поколения Ivy Bridge, при условии их нахождения в благоприятных температурном режиме, могут поднимать свою частоту на 200 МГц выше номинального значения. При этом эффективность работы Turbo Boost для всех рассматриваемых процессоров совершенно одинакова, а отличия от CPU прошлого поколения заключаются в большем приросте частоты при загрузке двух, трёх и четырёх ядер: в Core i5 поколения Sandy Bridge предел авторазгона в таких условиях был на 100 МГц ниже.

Пользуясь показаниями диагностической программы CPU-Z, ознакомимся с представителями модельного ряда Core i5 с дизайном Ivy Bridge несколько подробнее.

Intel Core i5-3570K



Процессор Core i5-3570K – это венец всей линейки Core i5 третьего поколения. Он может похвастать не только самой высокой в серии тактовой частотой, но и, в отличие от всех остальных модификаций, имеет важную особенность, подчёркнутую литерой «K» в конце модельного номера – незаблокированный множитель. Это позволяет Intel не без оснований причислять Core i5-3570K к специализированным оверклокерским предложениям. Причём, на фоне старшего оверклокерского процессора для платформы LGA 1155, Core i7-3770K, Core i5-3570K выглядит очень соблазнительно благодаря куда более приемлемой для многих цене, что способно сделать из этого CPU чуть ли не самое лучшее рыночное предложение для энтузиастов.

При этом Core i5-3570K интересен не только своей предрасположенностью к разгону. Для прочих пользователей эта модель может быть интересна и благодаря тому, что в ней встроена старшая вариация графического ядра – Intel HD Graphics 4000, которая имеет существенно более высокую производительность, нежели графические ядра прочих представителей модельного ряда Core i5.

Intel Core i5-3570



То же самое название, что и у Core i5-3570K, но без финальной литеры, как бы намекает, что мы имеем дело с неоверклокерской версией предыдущего процессора. Так оно и есть: Core i5-3570 работает на точно таких же тактовых частотах, что и его более продвинутый собрат, но не позволяет востребованное среди энтузиастов и продвинутых пользователей безграничное изменение множителя.

Однако есть и ещё одно «но». В Core i5-3570 не попала быстрая версия графического ядра, так что этот процессор довольствуется младшей версией графики Intel HD Graphics 2500, которая, как мы покажем далее, существенно хуже по всем аспектам производительности.

В итоге, Core i5-3570 больше похож на Core i5-3550, чем на Core i5-3570K. На что у него есть вполне веские причины. Появившись чуть позднее первой группы представителей Ivy Bridge, этот процессор символизирует собой некое развитие семейства. Имея ту же самую рекомендованную стоимость, что и модель, стоящая в табели о рангах на строчку ниже, он как бы заменяют собой Core i5-3550.

Intel Core i5-3550



Убывание модельного номера в очередной раз указывает на снижение вычислительной производительности. В данном случае, Core i5-3550 медленнее Core i5-3570 из-за чуть меньшей тактовой частоты. Впрочем, разница составляет всего 100 МГц, или около 3 процентов, так что не стоит удивляться, что и Core i5-3570, и Core i5-3550 оценены Intel одинаково. Логика производителя заключается в том, что Core i5-3570 должен постепенно вытеснить с полок магазинов Core i5-3550. Поэтому-то по всем остальным характеристикам, кроме тактовой частоты, оба эти CPU полностью идентичны.

Intel Core i5-3470



Младшая пара процессоров Core i5, основанных на новом 22-нм ядре Ivy Bridge, имеет рекомендованную цену ниже 200-долларовой отметки. По близкой цене эти процессоры можно найти и в магазине. При этом Core i5-3470 мало в чём уступает старшим Core i5: на месте все четыре вычислительных ядра, 6-мегабайтный кэш третьего уровня и тактовая частота свыше 3-гигагерцовой отметки. Intel избрала для дифференциации модификаций в обновлённом ряду Core i5 100-мегагерцовый шаг тактовой частоты, так что ожидать существенного различия между моделями в быстродействии в реальных задачах попросту неоткуда.

Впрочем, Core i5-3470 дополнительно отличается от старших собратьев и по графической производительности. Видеоядро HD Graphics 2500 работает в нём на чуть более низкой частоте: 1.1 ГГц против 1.15 ГГц у более дорогих модификаций процессоров.

Intel Core i5-3450



Самая младшая в иерархии Intel вариация процессора Core i5 третьего поколения, Core i5-3450, подобно Core i5-3550, постепенно уходит с рынка. Процессор Core i5-3450 плавно заменяется на описанный выше Core i5-3470, который работает на слегка более высокой таковой частоте. Других отличий между этими CPU нет.

Как мы тестировали

Для получения полного расклада производительности современных Core i5, нами были подробно протестированы все пять описанных выше Core i5 трёхтысячной серии. Основными соперниками для этих новинок выступили более ранние LGA 1155-процессоры аналогичного класса, относящиеся к поколению Sandy Bridge: Core i5-2400 и Core i5-2500K. Их стоимость вполне позволяет противопоставлять эти CPU новым Core i5 трёхтысячной серии: Core i5-2400 имеет такую же рекомендованную цену, как Core i5-3470 и Core i5-3450; а Core i5-2500K продаётся чуть дешевле Core i5-3570K.

Кроме этого, на диаграммы мы поместили результаты тестов процессоров более высокого класса Core i7-3770K и Core i7-2700K, а также процессора, предлагаемого компанией-конкурентом, AMD FX-8150. Кстати, весьма показательно, что после очередных снижений цен этот старший представитель семейства Bulldozer стоит как самые дешёвые Core i5 трёхтысячной серии. То есть, AMD уже не питает никаких иллюзий по поводу возможности противопоставления собственного восьмиядерника интеловским CPU класса Core i7.

В итоге, состав тестовых систем включал следующие программные и аппаратные компоненты:

Процессоры:

AMD FX-8150 (Zambezi, 8 ядер, 3.6-4.2 ГГц, 8 Мбайт L3);
Intel Core i5-2400 (Sandy Bridge, 4 ядра, 3.1-3.4 ГГц, 6 Мбайт L3);
Intel Core i5-2500K (Sandy Bridge, 4 ядра, 3.3-3.7 ГГц, 6 Мбайт L3);
Intel Core i5-3450 (Ivy Bridge, 4 ядра, 3.1-3.5 ГГц, 6 Мбайт L3);
Intel Core i5-3470 (Ivy Bridge, 4 ядра, 3.2-3.6 ГГц, 6 Мбайт L3);
Intel Core i5-3550 (Ivy Bridge, 4 ядра, 3.3-3.7 ГГц, 6 Мбайт L3);
Intel Core i5-3570 (Ivy Bridge, 4 ядра, 3.4-3.8 ГГц, 6 Мбайт L3);
Intel Core i5-3570K (Ivy Bridge, 4 ядра, 3.4-3.8 ГГц, 6 Мбайт L3);
Intel Core i7-2700K (Sandy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3).

Процессорный кулер: NZXT Havik 140;
Материнские платы:

ASUS Crosshair V Formula (Socket AM3+, AMD 990FX + SB950);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77 Express).

Память: 2 x 4 GB, DDR3-1866 SDRAM, 9-11-9-27 (Kingston KHX1866C9D3K2/8GX).
Графические карты:

AMD Radeon HD 6570 (1 Гбайт/128-бит GDDR5, 650/4000 МГц);
NVIDIA GeForce GTX 680 (2 Гбайт/256-бит GDDR5, 1006/6008 МГц).

Жёсткий диск: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Corsair AX1200i (80 Plus Platinum, 1200 Вт).
Операционная система: Microsoft Windows 7 SP1 Ultimate x64.
Драйверы:

AMD Catalyst 12.8 Driver;
AMD Chipset Driver 12.8;
Intel Chipset Driver 9.3.0.1019;
Intel Graphics Media Accelerator Driver 15.26.12.2761;
Intel Management Engine Driver 8.1.0.1248;
Intel Rapid Storage Technology 11.2.0.1006;
NVIDIA GeForce 301.42 Driver.

При тестировании системы, основанной на процессоре AMD FX-8150, патчи операционной системы KB2645594 и KB2646060 были установлены.

Видеокарта NVIDIA GeForce GTX 680 использовалась при тестировании скорости работы процессоров в системе с дискретной графикой, AMD Radeon HD 6570 же применялась в качестве ориентира при исследовании производительности интегрированной графики.

Процессор Intel Core i5-3570 в тестировании систем, снабжённых дискретной графикой, участия не принимал, так как с точки зрения вычислительной производительности он полностью идентичен Intel Core i5-3570K, работающему на таких же тактовых частотах.

Вычислительная производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тест Bapco SYSmark 2012, моделирующий работу пользователя в распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера.



В целом, процессоры Core i5, относящиеся к трёхтысячной серии, демонстрируют вполне ожидаемую производительность. Они быстрее, чем Core i5 прошлого поколения, причём процессор Core i5-2500K, который является почти самым быстрым Core i5 с дизайном Sandy Bridge, уступает по быстродействию даже младшей из новинок, Core i5-3450. Однако при этом до Core i7 свежие Core i5 дотянуться не в состоянии, сказывается отсутствие в них технологии Hyper-Threading.

Более глубокое понимание результатов SYSmark 2012 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: ABBYY FineReader Pro 10.0, Adobe Acrobat Pro 9, Adobe Flash Player 10.1, Microsoft Excel 2010, Microsoft Internet Explorer 9, Microsoft Outlook 2010, Microsoft PowerPoint 2010, Microsoft Word 2010 и WinZip Pro 14.5.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты компании Adobe: Photoshop CS5 Extended, Premiere Pro CS5 и After Effects CS5.



Web Development - сценарий, в рамках которого моделируется создание web-сайта. Используются приложения: Adobe Photoshop CS5 Extended, Adobe Premiere Pro CS5, Adobe Dreamweaver CS5, Mozilla Firefox 3.6.8 и Microsoft Internet Explorer 9.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию рыночных тенденций, которые выполняются в Microsoft Excel 2010.



Сценарий 3D Modeling всецело посвящён созданию трёхмерных объектов и рендерингу статичных и динамических сцен с использованием Adobe Photoshop CS5 Extended, Autodesk 3ds Max 2011, Autodesk AutoCAD 2011 и Google SketchUp Pro 8.



В последнем сценарии, System Management, выполняется создание бэкапов и установка программного обеспечения и апдейтов. Здесь задействуются несколько различных версий Mozilla Firefox Installer и WinZip Pro 14.5.



В большинстве сценариев мы сталкиваемся с типичной картиной, когда Core i5 трёхтысячной серии быстрее своих предшественников, но уступают любым Core i7, как основанным на микроархитектуре Ivy Bridge, так и на Sandy Bridge. Однако существуют и случаи не совсем типичного поведения процессоров. Так, в сценарии Media Creation процессору Core i5-3570K удаётся превзойти Core i7-2700K; при использовании пакетов трёхмерного моделирования неожиданно хорошо проявляет себя восьмиядерный AMD FX-8150; а в сценарии System Management, генерирующим в основном однопоточную нагрузку, процессор прошлого поколения Core i5-2500K почти догоняет по быстродействию свежий Core i5-3470.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы стараемся проводить испытания так, чтобы по возможности снять нагрузку с видеокарты: выбираются наиболее процессорозависимые игры, а тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. То есть, полученные результаты дают возможность оценить не столько уровень fps, достижимый в системах с современными видеокартами, сколько то, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе. Следовательно, основываясь на приведённых результатах, вполне можно строить догадки о том, как будут вести себя процессоры и в будущем, когда на рынке появятся более быстрые варианты графических ускорителей.


















В наших многочисленных предшествующих тестированиях мы неоднократно характеризовали процессоры семейства Core i5 как хорошо подходящие для геймеров. Не намерены отказываться от этой позиции мы и теперь. В игровых применениях Core i5 сильны благодаря эффективной микроархитектуре, четырёхъядерному дизайну и высоким тактовым частотам. Отсутствие же у них поддержки технологии Hyper-Threading способно сыграть добрую службу в плохо оптимизированных под многопоточность играх. Впрочем, количество таких игр из числа актуальных уменьшается с каждым днём, что мы и видим по приведённым результатам. Core i7, основанный на дизайне Ivy Bridge, на всех диаграммах находится выше аналогичных по внутреннему устройству Core i5. В итоге, игровая производительность трёхтысячной серии Core i5 оказывается на вполне ожидаемом уровне: эти процессоры однозначно лучше Core i5 двухтысячной серии, а иногда даже способны составить конкуренцию и Core i7-2700K. Параллельно отметим, что старший процессор компании AMD не выдерживает с современными интеловскими предложениями никакой конкуренции: его отставание по игровой производительности без всяких преувеличений можно назвать катастрофическим.

В дополнение к игровым тестам приведём и результаты синтетического бенчмарка Futuremark 3DMark 11, запущенного с профилем Performance.






Ничего принципиально нового не показывает и синтетический тест Futuremark 3DMark 11. Производительность Core i5 третьего поколения ложится ровно между Core i5 с прошлым дизайном и любыми процессорами Core i7, обладающими поддержкой технологии Hyper-Threading и немного более высокими тактовыми частотами.

Тесты в приложениях

Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1.1 Гбайт.



В последних версиях архиватора WinRAR была существенно улучшена поддержка многопоточности, так что теперь скорость архивации стала серьёзно зависеть от количества имеющихся в распоряжении CPU вычислительных ядер. Соответственно, процессоры Core i7, усиленные технологией Hyper-Threading, и восьмиядерный процессор AMD FX-8150 демонстрируют здесь наилучшее быстродействие. Что же касается серии Core i5, то с ней всё как всегда. Core i5 с дизайном Ivy Bridge однозначно лучше старых, причём преимущество новинок над старичками составляет порядка 7 процентов для моделей, имеющих идентичную номинальную частоту.

Производительность процессоров при криптографической нагрузке измеряется встроенным тестом популярной утилиты TrueCrypt, использующим «тройное» шифрование AES-Twofish-Serpent. Следует отметить, что данная программа не только способна эффективно загружать работой любое количество ядер, но и поддерживает специализированный набор инструкций AES.



Всё как обычно, только процессор FX-8150 вновь находится в верхней части диаграммы. В этом ему помогает возможность выполнения восьми вычислительных потоков одновременно и хорошая скорость исполнения целочисленных и битовых операций. Что же касается Core i5 трёхтысячной серии, то они вновь безоговорочно превосходят своих предшественников. Причём, разница в производительности CPU с одинаковой декларируемой номинальной частотой достаточно существенна и составляет порядка 15 процентов в пользу новинок с микроархитектурой Ivy Bridge.

С выходом восьмой версии популярного пакета для научных вычислений Wolfram Mathematica мы решили вернуть его в число используемых тестов. Для оценки производительности систем в нём используется встроенный в эту систему бенчмарк MathematicaMark8.



Wolfram Mathematica традиционно относится к числу приложений, плохо «переваривающих» технологию Hyper-Threading. Именно поэтому на приведённой диаграмме первую позицию занимает Core i5-3570K. Да и результаты прочих Core i5 трёхтысячной серии весьма недурны. Все эти процессоры не только обгоняют своих предшественников, но и оставляют позади старший Core i7 с микроархитектурой Sandy Bridge.

Измерение производительности в Adobe Photoshop CS6 мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



Новая микроархитектура Ivy Bridge обеспечивает примерно 6-процентное превосходство аналогичных по тактовой частоте Core i5 третьего поколения над своими более ранними собратьями. Если же сопоставить между собой процессоры с одинаковой стоимостью, то носители новой микроархитектуры попадают в ещё более выгодное положение, отвоёвывая у Core i5 двухтысячной серии более 10 процентов быстродействия.

Производительность в Adobe Premiere Pro CS6 тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Нелинейный видеомонтаж – хорошо распараллеливаемая задача, так что до Core i7-2700K новые Core i5 с дизайном Ivy Bridge дотянуться не в состоянии. Зато своих предшественников-одноклассников, использующих микроархитектуру Sandy Bridge, они превосходят по скорости примерно на 10 процентов (при сравнении моделей с одинаковой тактовой частотой).

Для измерения скорости перекодирования видео в формат H.264 используется x264 HD Benchmark 5.0, основанный на измерении времени обработки исходного видео в формате MPEG-2, записанного в разрешении 1080p с потоком 20 Мбит/сек. Следует отметить, что результаты этого теста имеют огромное практическое значение, так как используемый в нём кодек x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч.






Картина при перекодировании видеоконтента высокого разрешения вполне привычна. Преимущества микроархитектуры Ivy Bridge выливаются в примерно 8-10-процентное превосходство новых Core i5 над старыми. Необычно же выглядит высокий результат восьмиядерного FX-8150, который при втором проходе кодирования обгоняет даже Core i5-3570K.

По просьбам наших читателей используемый набор приложений пополнился и ещё одним бенчмарком, показывающим скорость работы с видеоконтентом высокого разрешения, - SVPmark3. Это специализированный тест производительности системы при работе с пакетом SmoothVideo Project, направленным на повышение плавности видео путём добавления в видеоряд новых кадров, содержащих промежуточные положения объектов. Приведённые в диаграмме числа – это результат бенчмарка на реальных FullHD-видеофрагментах без привлечения к расчётам мощностей графической карты.



Диаграмма очень похожа на результаты второго прохода перекодирования кодеком x264. Это недвусмысленно намекает, что большинство задач, связанных с обработкой видеоконтента высокого разрешения, создают примерно одинаковую по своему характеру вычислительную нагрузку.

Вычислительную производительность и скорость рендеринга в Autodesk 3ds max 2011 мы измеряем, прибегая к услугам специализированного теста SPECapc for 3ds Max 2011.






Честно говоря, ничего нового нельзя сказать и про производительность, наблюдаемую при финальном рендеринге. Распределение результатов можно назвать стандартным.

Тестирование скорости финального рендеринга в Maxon Cinema 4D выполняется путём использования специализированного теста Cinebench 11.5.



Ничего нового не показывает и диаграмма результатов Cinebench. Новые Core i5 трёхтысячной серии в очередной раз оказывается заметно лучше своих предшественников. Даже самый младший из них, Core i5-3450, уверенно обходит Core i5-2500K.

Энергопотребление

Одним из основных плюсов 22-нм техпроцесса, применяемого для выпуска процессоров поколения Ivy Bridge, Intel называет уменьшившееся тепловыделение и энергопотребление полупроводниковых кристаллов. Это нашло отражение и в официальных спецификациях Core i5 третьего поколения: для них установлен не 95-ваттный, как раньше, а 77-ваттный тепловой пакет. Так что превосходство новых Core i5 над предшественниками в экономичности сомнений не вызывает. Но каков масштаб этого выигрыша на практике? Следует ли рассматривать экономичность трёхтысячной серии Core i5 их серьёзным конкурентным преимуществом?

Чтобы ответить на эти вопросы, мы провели специальное тестирование. Используемый нами в тестовой системе новый цифровой блок питания Corsair AX1200i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для наших измерений. На следующих ниже графиках, если иное не оговаривается отдельно, приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД же самого блока питания в данном случае не учитывается. Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.6.4-AVX. Кроме того, для правильной оценки энергопотребления в простое мы активировали турбо-режим и все имеющиеся энергосберегающие технологии: C1E, C6 и Enhanced Intel SpeedStep.



В состоянии простоя системы со всеми принявшими участие в тестах процессорами показывают примерно одинаковое энергопотребление. Конечно, оно не полностью идентично, различия на уровне десятых долей ватта имеют место, но мы решили не переносить их на диаграмму, так как столь несущественная разница скорее относится к погрешности измерений, нежели к наблюдаемым физическим процессам. Кроме того, в условиях близких величин потребления процессоров серьёзное влияние на общее энергопотребление начинает оказывать эффективность и настройки преобразователя питания материнской платы. Поэтому, если вы действительно обеспокоены величиной потребления в покое, в первую следует искать материнские платы с наиболее эффективным преобразователем питания, а процессор, как показывают полученные нами результаты, из числа LGA 1155-совместимых моделей, может подойти любой.



Однопоточная нагрузка, при которой у процессоров с турбо-режимом частота повышается до максимальных значений, приводит к заметным различиям в потреблении. В первую очередь в глаза бросаются совершенно нескромные аппетиты AMD FX-8150. Что же касается LGA 1155-моделей CPU, то те из них, что базируются на 22-нм полупроводниковых кристаллах, действительно заметно экономичнее. Различие в потреблении четырёхъядерных Ivy Bridge и Sandy Bridge, работающих на аналогичной тактовой частоте, составляет порядка 4-5 Вт.



Полная многопоточная вычислительная нагрузка усугубляет различия в потреблении. Система, оснащённая процессорами Core i5 третьего поколения, выигрывает в экономичности у аналогичной платформы с процессорами на предыдущем дизайне порядка 18 Вт. Это идеально коррелирует с разницей в теоретических показателях расчетного тепловыделения, заявляемых для своих процессоров компанией Intel. Таким образом, с точки зрения соотношения производительности на ватт процессорам Ivy Bridge среди CPU для настольных компьютеров нет равных.

Производительность графического ядра

Рассматривая современные процессоры для платформы LGA 1155, следует уделить внимание и встроенным в них графическим ядрам, которые с внедрением микроархитектуры Ivy Bridge стали более быстрыми и более совершенными с точки зрения имеющихся возможностей. Однако вместе с этим Intel предпочитает устанавливать в свои процессоры для настольного сегмента урезанную версию видеоядра с сокращённым с 16 до 6 числом исполнительных устройств. Фактически, полноценная графика присутствует лишь в процессорах Core i7 и в Core i5-3570K. Большинство же десктопных Core i5 трёхтысячной серии, очевидно, окажутся в графических 3D-приложениях достаточно слабы. Впрочем, вполне вероятно, что даже имеющаяся урезанная графическая мощность удовлетворит некоторое количество пользователей, не нацеленных рассматривать встроенную графику как трёхмерный видеоускоритель.

Начать тестирование встроенной графики мы решили с теста 3DMark Vantage. Результаты, полученные в разных версиях 3DMark, – очень популярная метрика для оценки средневзвешенной игровой производительности видеокарт. Выбор же версии Vantage обусловлен тем, что она использует DirectX десятой версии, поддерживаемой всеми принимающими в испытаниях видеоускорителями, в том числе и графикой процессоров Core с дизайном Sandy Bridge. Заметим, что помимо полного набора процессоров семейства Core i5, работающих со своими интегрированными графическими ядрами, мы включили в тесты и показатели производительности системы на базе Core i5-3570K с дискретной графической картой Radeon HD 6570. Эта конфигурация будет служить для нас своеобразным ориентиром, позволяющим представить себе место интеловских графических ядер HD Graphics 2500 и HD Graphics 4000 в мире дискретных видеоускорителей.






Устанавливаемое Intel в большинство своих процессоров для настольных компьютеров графическое ядро HD Graphics 2500 по своей 3D-производительности оказывается похоже на HD Graphics 3000. Зато старший вариант интеловской графики из процессоров Ivy Bridge, HD Graphics 4000, выглядит огромным шагом вперёд, его производительность более чем вдвое превосходит скорость лучшего встроенного ядра прошлого поколения. Впрочем, любой из имеющихся вариантов Intel HD Graphics пока ещё нельзя назвать обладающим приемлемой 3D-производительностью по меркам настольных систем. Например, видеокарта Radeon HD 6570, которая относится к нижнему ценовому сегменту и стоит порядка $60-70, способна предложить существенно лучшее быстродействие.

В дополнение к синтетическому 3DMark Vantage, мы провели и несколько тестов в реальных игровых приложениях. В них мы использовали низкие настройки качества графики и разрешение 1650x1080, которое на данный момент мы считаем минимальным из интересных пользователям десктопов.












В целом, в играх наблюдается примерно одинаковая картина. Встроенная в Core i5-3570K старшая версия графического ускорителя обеспечивает среднее число кадров в секунду на достаточно неплохом (для интегрированного решения) уровне. Однако Core i5-3570K остаётся единственным процессором из Core i5 третьего поколения, видеоядро которого способно выдавать приемлемую графическую производительность, которой, при некоторых послаблениях в качестве картинки, может хватать для комфортного восприятия значительного числа нынешних игр. Все прочие CPU этого класса, в которых используется ускоритель HD Graphics 2500 с уменьшенным количеством исполнительных устройств, выдают почти вдвое более низкую скорость, чего по современным меркам явно недостаточно.

Преимущество графического ядра HD Graphics 4000 над встроенным ускорителем прошлого поколения HD Graphics 3000 колеблется в достаточно широких пределах и в среднем составляет около 90 процентов. С предыдущим флагманским интегрированным решением легко может сравниться младшая версия графики из Ivy Bridge, HD Graphics 2500, которая устанавливается в большинство десктопных процессоров Core i5 трёхтысячной серии. Что же касается прошлого варианта общеупотребительного графического ядра, HD Graphics 2000, то его производительность теперь выглядит крайне низкой, в играх оно отстаёт от того же HD Graphics 2500 в среднем на 50-60 процентов.

Иными словами, 3D-производительность графического ядра процессоров Core i5 действительно сильно возросла, но, по сравнению с тем количеством кадров, которое способен выдать ускоритель Radeon HD 6570, всё это кажется мышиной вознёй. Даже встроенный в Core i5-3570K ускоритель HD Graphics 4000 представляет собой не слишком хорошую альтернативу десктопным 3D-ускорителям нижнего уровня, более же распространённый вариант интеловской графики, можно сказать, вообще для большинства игр неприменим.

Однако далеко не все пользователи рассматривают встроенные в процессоры видеоядра как игровые трёхмерные ускорители. Значительная доля потребителей заинтересована в HD Graphics 4000 и HD Graphics 2500 благодаря их медийным возможностям, альтернатив которым в нижней ценовой категории попросту нет. Здесь в первую очередь мы имеем в виду технологию Quick Sync, предназначенную для быстрого аппаратного кодирования видео в формат AVC/H.264, вторая версия которой реализована в процессорах семейства Ivy Bridge. Поскольку в новых графических ядрах Intel обещает существенное увеличение скорости транскодирования, мы отдельно протестировали и функционирование Quick Sync.

Во время практических испытаний мы измерили время выполнения перекодирования одного 40-минутного эпизода популярного сериала, закодированного в формате 1080p H.264 с битрейтом 10 Мбит/сек для просмотра на Apple iPad2 (H.264, 1280x720, 3Mbps). Для тестов использовалась поддерживающая технологию Quick Sync утилита Cyberlink Media Espresso 6.5.2830.



Ситуация здесь отличается от того, что наблюдалось в играх, кардинально. Если раньше Intel не дифференцировал Quick Sync в процессорах с разными версиями графического ядра, то теперь всё поменялось. Эта технология в HD Graphics 4000 и в HD Graphics 2500 работает с примерно вдвое отличающейся скоростью. Причём, обычные процессоры Core i5 трёхтысячной серии, в которые устанавливается ядро HD Graphics 2500, перекодируют видео высокого разрешения посредством Quick Sync примерно с той же производительностью, что и их предшественники. Прогресс же в быстродействии виден только по результатам Core i5-3570K, где присутствует «продвинутое» графическое ядро HD Graphics 4000.

Разгон

Разгон процессоров Core i5, относящихся к поколению Ivy Bridge, может идти по двум принципиально различным сценариям. Первый из них касается разгона процессора Core i5-3570K, изначально ориентированного на оверклокинг. Этот CPU имеет незаблокированный множитель, и увеличение его частоты выше номинальных значений выполняется по типичному для платформы LGA 1155 алгоритму: посредством наращивания коэффициента умножения поднимаем частоту работы процессора и при необходимости добиваемся стабильности путём подачи на CPU повышенного напряжения и улучшения его охлаждения.

Без поднятия напряжения питания наш экземпляр процессора Core i5-3570K разогнался до 4.4 ГГц. Для обеспечения стабильности в этом режиме потребовалось лишь простое переключение функции материнской платы Load-Line Calibration в положение High.


Дополнительное увеличение напряжения питания процессора до 1.25 В позволило достичь стабильной работоспособности на более высокой частоте - 4.6 ГГц.


Это – вполне типичный результат для CPU поколения Ivy Bridge. Такие процессоры разгоняются обычно немного хуже, чем Sandy Bridge. Причина, как предполагается, кроется в последовавшем за внедрением 22-нм технологии производства уменьшении площади полупроводникового процессорного кристалла, ставящем вопрос о необходимости увеличения плотности теплового потока при охлаждении. В то же время используемый Intel внутри процессоров термоинтерфейс, как и обычно применяемые способы снятия тепла с поверхности процессорной крышки, решению этой проблемы не способствуют.

Впрочем, как бы то ни было, разгон до 4.6 ГГц – очень неплохой результат, особенно если принять во внимание тот факт, что процессоры Ivy Bridge на одинаковой с Sandy Bridge тактовой частоте выдают примерно на 10 процентов лучшее быстродействие благодаря своим микроархитектурным усовершенствованиям.

Второй сценарий разгона касается остальных процессоров Core i5, которые свободного множителя лишены. Хотя платформа LGA 1155 относится к увеличению частоты базового тактового генератора крайне отрицательно, и теряет стабильность уже при установке формирующей частоты на 5 процентов выше номинально значения, разгонять процессоры Core i5, не относящиеся к K-серии, всё-таки можно. Дело в том, что Intel позволяет ограниченно увеличивать и их множитель, наращивая его не более чем на 4 единицы выше номинала.



Учитывая же, что при этом сохраняется работоспособность технологии Turbo Boost, которая для Core i5 с дизайном Ivy Bridge допускает 200-мегагерцовый разгон даже при загрузке всех процессорных ядер, тактовую частоту в общем итоге можно «накрутить» на 600 МГц выше штатного значения. Иными словами, Core i5-3570 можно разогнать до 4.0 ГГц, Core i5-3550 – до 3.9 ГГц, Core i5-3470 – до 3.8 ГГц, а Core i5-3450 – до 3.7 ГГц. Что мы успешно подтвердили в ходе наших практических экспериментов.

Core i5-3570:


Core i5-3550:


Core i5-3470:


Core i5-3450:


Надо сказать, что такой ограниченный разгон выполняется даже проще, чем в случае процессора Core i5-3570K. Не столь существенное приращение тактовой частоты не влечёт за собой появление проблем со стабильностью даже при использовании номинального напряжения питания. Поэтому, скорее всего, единственное, что потребуется для оверклокинга процессоров Ivy Bridge линейки Core i5, не относящихся к K-серии, это – поменять значение множителя в BIOS материнской платы. Достигаемый же при этом результат, хотя и нельзя назвать рекордным, скорее всего вполне устроит подавляющее большинство неискушённых пользователей.

Выводы

Мы уже неоднократно говорили о том, что микроархитектура Ivy Bridge стала удачным эволюционным обновлением процессоров Intel. Производственная полупроводниковая технология с 22-нм нормами и многочисленные микроархитектурные улучшения сделали новинки как более быстродействующими, так и более экономичными. Это относится к любым Ivy Bridge вообще и к рассмотренным в этом обзоре десктопным процессорам Core i5 трёхтысячной серии в частности. Сопоставляя новую линейку процессоров Core i5 с тем, что мы имели год назад, нетрудно заметить целый букет существенных улучшений.

Во-первых, новые Core i5, основанные на дизайне Ivy Bridge, стали производительнее своих предшественников. Несмотря на то, что Intel не прибегла к увеличению тактовых частот, преимущество новинок составляет порядка 10-15 процентов. Даже самый медленный из десктопных Core i5 третьего поколения, процессор Core i5-3450, обгоняет Core i5-2500K в большинстве тестов. А старшие представители свежей линейки порой могут соперничать с процессорами более высокого класса, Core i7, основанными на микроархитектуре Sandy Bridge.

Во-вторых, новые Core i5 стали заметно экономичнее. Их тепловой пакет установлен в 77 Ватт, и это находит отражение на практике. При любой нагрузке компьютеры, использующие Core i5 с дизайном Ivy Bridge, потребляют на несколько ватт меньше, чем аналогичные системы, где используются CPU класса Sandy Bridge. Причём, при предельной вычислительной нагрузке выигрыш может достигать почти двух десятков ватт, а это – весьма существенная экономия по современным меркам.

В-третьих, в новых процессорах нашло место существенно улучшенное графическое ядро. Младший вариант графического ядра процессоров Ivy Bridge работает по меньшей мере не хуже, чем HD Graphics 3000 из старших процессоров Core второго поколения, и к тому же, поддерживая DirectX 11, имеет более современные возможности. Что же касается флагманского интегрированного ускорителя HD Graphics 4000, который используется в процессоре Core i5-3570K, то он даже позволяет получать вполне приемлемую частоту кадров в достаточно современных играх, правда, при значительных послаблениях в настройках качества.

Единственный спорный момент, который мы заметили у Core i5 третьего поколения, это – слегка более низкий разгонный потенциал, нежели у процессоров класса Sandy Bridge. Однако этот недостаток проявляется лишь в единственной оверклокерской модели Core i5-3570K, где изменение коэффициента умножения искусственно не ограничивается сверху, и к тому же, он вполне компенсируется более высокой удельной производительностью, развиваемой микроархитектурой Ivy Bridge.

Иными словами, мы не видим ни одной причины, по которой, выбирая процессор среднего класса для платформы LGA 1155, предпочтение должно быть отдано «старичкам», использующим полупроводниковые кристаллы поколения Sandy Bridge. Тем более что цены, установленные Intel на более прогрессивные модификации Core i5, вполне гуманны и близки к стоимости устаревающих процессоров прошлого поколения.

Процессор - это мозг компьютера, но, чтобы понять разницу между процессорами, требуется много собственных мозгов! Intel не упростила потребителям свои странные схемы именования, и чаще всего возникает вопрос: в чем разница между процессорами i3, i5 или i7? Какой я должен купить?

Пора демистифицировать это. В этой статье я не буду касаться других процессоров Intel, таких как серия Pentium или новый ноутбук Core серии M. Они хороши сами по себе, но серия Core является самой популярной и запутанной, поэтому давайте просто сосредоточимся на этом.

Понимание номеров моделей

Честно говоря, это очень просто. Intel Core i7 лучше, чем Core i5, который, в свою очередь, лучше, чем Core i3. Проблема состоит в том, чтобы знать, чего ожидатьот каждого процессора.

Во-первых, i7 не означает семиядерный процессор! Это только имена, указывающие на относительную производительность.

Как правило, в серии Core i3 используются только двухъядерные процессоры, а в процессорах Core i5 и Core i7 используются двух-ядерные, четырех-ядерные и шести-ядерные процессоры. Четырех-ядерные процессоры обычно лучше, чем двух-ядерные, но пока об этом не беспокойтесь.

Intel выпускает семейства чипсетов, таких как новое поколение процессоров Skylake для семейства Skylake 6-го поколения. Каждая семья, в свою очередь, имеет собственную линейку процессоров Core i3, Core i5 и Core i7.

Вы можете определить, к какому поколению процессору принадлежит первая цифра в четырехзначном названии модели . Например, Intel Core i3-5 200 относится к 5 -му поколению. Помните, что новые поколения Intel не будут поддерживать Windows 7, но так как Windows 10 - бесплатное обновление в любом случае, используйте новейшее поколение.

Совет. Вот полезное эмпирическое правило. Остальные три цифры - это оценка компанией Intel того, как процессор сравнивается с другими в своей собственной линии. Например, Intel Core i3-5350 превосходит Core i3-5200, потому что 350 - это больше 200.

Последние буквы: U, Q, H, K

Все изменилось с тех пор, как мы в последний раз смотрели на список процессоров Intel. Декодирование списка процессоров. За номером модели обычно следует одна или комбинация следующих букв: U, Y, T, Q, H и K. Вот что они означают:

  • U: Сверхнизкая мощность. U рейтинг только для процессоров ноутбуков. Они потребляют меньше энергии и лучше подходят для батареи.
  • Y: Низкая мощность. Обычно используется для ноутбуков и мобильных процессоров старшего поколения.
  • T: Power Оптимизирован для настольных процессоров.
  • Q: Четырех-ядерный процессор. Рейтинг Q предназначен только для процессоров с четырьмя физическими ядрами.
  • H: Высокопроизводительная графика. В чипсете есть один из лучших графических блоков Intel.
  • K: Разблокирован. Это означает, что вы можете разогнать процессор самостоятельно.

Понимание этих букв и приведенной выше системы нумерации поможет вам узнать, что предлагает процессор, просто взглянув на номер модели, без необходимости читать фактические спецификации.

Вы можете найти значение других букв в руководствах Intel по номерам процессоров.

Hyper-Threading: i7> i3> i5

Как вы можете видеть выше, Intel специально пишет U и Q для числа физических ядер. Ну, какие есть другие ядра, спросите вы? Ответ - виртуальные ядра, активируемые с помощью технологии Hyper-Threading.

С точки зрения непрофессионала, гиперпоточность позволяет одному физическому ядру действовать в качестве двух виртуальных ядер, тем самым выполняя множество задач одновременно, не активируя второе физическое ядро (которое потребует больше энергии от системы).

Если оба процессора активны и используют гиперпоточность, эти четыре виртуальных ядра будут вычислять быстрее. Однако обратите внимание, что физические ядра быстрее виртуальных ядер. Четырех-ядерный процессор будет работать намного лучше, чем двух-ядерный CPU с гиперпотоком!

Серия Intel Core i3 имеет гиперпоточность. Серия Intel Core i7 также поддерживает гиперпоточность. Серия Intel Core i5 не поддерживает его.

Turbo Boost: i7> i5> i3

С другой стороны, Intel Core i3 серии не поддерживает Turbo Boost. Серия Core i5 использует Turbo Boost для ускорения ваших задач, как и Core i7.

Turbo Boost - это запатентованная технология, чтобы разумно увеличить тактовую частоту процессора, если этого требует приложение. Например, если вы играете в игру, и ваша система требует некоторой дополнительной мощности, Turbo Boost начнет работать, чтобы компенсировать ее.

Turbo Boost полезен для тех, кто использует ресурсоемкое программное обеспечение, такое как видео редакторы или видеоигры, но это не имеет большого значения, если вы только собираетесь просматривать веб-страницы и использовать Microsoft Office.

Помимо Hyper-Threading и Turbo Boost, одним из основных различий в линейке Core является размер кэша. Кэш - это собственная память процессора и действует как его личная ОЗУ - и это одна из малоизвестных функций, которые могут замедлить работу вашего ПК.

Точно так же, как с ОЗУ, чем больше размер кэша, тем лучше. Поэтому, если процессор выполняет одну задачу снова и снова, он будет хранить эту задачу в своем кэше. Если процессор может хранить больше задач в своей частной памяти, он может сделать их быстрее, если они появятся снова.

В серии Core i3 обычно содержится до 3 Мб кэша. Серия Core i5 имеет от 3 МБ до 6 МБ кэш-памяти. Серия Core i7 имеет от 4 МБ до 8 МБ кэш-памяти.

С тех пор как графика была интегрирована в процессорный чип, это стало важным моментом при покупке процессоров. Но, как и во всем остальном, Intel сделала систему немного запутанной.

Сейчас, как правило, три уровня графических устройств: Intel HD, Intel Iris и Intel Iris Pro. Вы увидите название модели, например, Intel HD 520 или Intel Iris Pro 580 ... и тут начинается путаница.

Вот краткий пример того, как это может быть ошеломляющим. Intel HD 520 - это основной графический чипсет. Intel Iris 550 лучше, чем Intel HD 520, но также и базовый. Но Intel HD 530 является высокопроизводительным графическим блоком и лучше, чем Intel Iris 550. Однако Intel Iris Pro 580 также является высокопроизводительным графическим блоком и лучше, чем Intel HD 530.

Лучший совет, как их интерпретировать? Просто не надо. Вместо этого полагайтесь на систему именования Intel. Если модель процессора заканчивается на H, вы знаете, что это высокопроизводительный модуль.

Сравнение ядер i3, i5, i7

Процессор

Количество ядер

Размер кэша

Hyper-Threading

Turbo Boost

Графика

Цена

2 3МБ Есть Нет Низкая Низкая
2-4 3МБ-6МБ нет Есть Средняя Средняя
2-6 4МБ-12МБ Есть Есть Лучшая Дорогая

Проще говоря, вот для кого каждый тип процессора подходит лучше всего:

  • Core i3: основные пользователи. Экономический выбор. Удобен для просмотра в Интернете, использования Microsoft Office, видео-звонков и социальных сетей. Не для геймеров или профессионалов.
  • Core i5: Промежуточные пользователи. Те, кто хочет баланса между производительностью и ценой. Хорошо подходит для игр, если вы покупаете процессор HQ или Q-процессор с выделенным графическим процессором.
  • Core i7: Профессионалы. Это лучшее, что может сделать Intel сейчас.

Как вы выбирали?

Эта статья представляет собой основное руководство для тех, кто хочет купить новый процессор Intel, но путается между Core i3, i5 и i7. Но даже после понимания всего этого, когда пришло время принять решение, вам может потребоваться выбрать один из двух процессоров разных поколений.

Что еще вы можете посоветовать тем, кто так же застрял при покупке PCU и должен сделать выбор?

Лучшие статьи по теме